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Apdo Postal 70-543, 04510 México, DF, Mexico
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Abstract
Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich–
Canham energy, quadratic in the mean curvature. When the membrane is axially
symmetric, this energy can be viewed as an ‘action’ describing the motion of
a particle; the contours of equilibrium geometries are identified with particle
trajectories. A novel Hamiltonian formulation of the problem is presented
which exhibits the following two features: (i) the second derivatives appearing
in the action through the mean curvature are accommodated in a natural phase
space and (ii) the intrinsic freedom associated with the choice of evolution
parameter along the contour is preserved. As a result, the phase space involves
momenta conjugate not only to the particle position but also to its velocity, and
there are constraints on the phase space variables. This formulation provides
the groundwork for a field theoretical generalization to arbitrary configurations,
with the particle replaced by a loop in space.

PACS numbers: 87.16.Dg, 68.03.Cd, 02.40.Hw

Phospholipid molecules self-assemble in water to form vesicles or membranes [1, 2]. The
vesicles are very thin compared to their size so that it is sensible to describe them as surfaces
of negligible thickness. Moreover, the vesicle behaves as a two-dimensional fluid: there is
no resistance to shear so that the molecules move freely in the plane of the membrane. In a
theoretical model of lipid vesicles, this means that the energy can depend only on the geometry
of this surface. The leading term in the energy is proportional to the integrated square of the
mean curvature, penalizing bending [3–5]. The molecular details are essentially irrelevant.

The ‘shape equation’, describing equilibrium geometries [6, 7], is a fourth-order nonlinear
PDE. With axial symmetry, the PDE reduces to a nonlinear ODE which, in turn, possesses
a first integral [8, 9]. Indeed, it is possible to interpret the energy as an action describing
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the motion of a particle. Geometrical contours can be identified with particle trajectories.
Building on Deuling and Helfrich’s pioneering work in the early 1970s [10], axisymmetric
solutions of the shape equation describing an isolated vesicle were pretty well understood by
the mid-1990s (see the reviews [11–13]).

Without the symmetry we are less well off. However, with increasing computer power,
impressive results can be achieved; Monte Carlo and dynamical triangulation (see, e.g.,
[14, 15]) will minimize the energy for us. In the latter case, the program Surface Evolver was
designed with exactly this sort of problem in mind [16].

At this level, the shape equation is consigned to the status of a curiosity. However, there
is a lot of information encoded in the shape equation which can be accessed without having
to solve it explicitly. For example, it is not widely known that the shape equation can be
cast as a conservation law for the stresses prevailing within the membrane [9]. These stresses
are completely geometrical. They transmit forces. It would be difficult to understand the
nature of these forces without taking the shape equation apart. In this respect, a computation
scheme to solve the shape equation would be a useful complement to energy minimization.
The mechanical analogue of the axially symmetric shape equation is most naturally formulated
as a Hamiltonian initial value problem. There is no obstacle, in principle, to setting up a field
theoretical generalization: instead of a point particle take a closed loop; motion of the loop
will generate a surface. Unfortunately, the existing Hamiltonian approaches to solving the
axially symmetric shape equation, that use arclength along the contour as a parameter, are
tailored very specifically to the symmetry, so they are not very helpful.

In this paper, we present a novel Hamiltonian formulation of the axially symmetric
shape equation which takes no shortcuts home. It will, however, admit a field theoretical
generalization with the particle replaced by a loop in space [17]. This formulation will involve
two key features:

(i) When axial symmetry is relaxed there is no single privileged parameter analogous to
arclength along the contour. The formalism should therefore respect the intrinsic freedom
associated with the choice of evolution parameter.

(ii) A point that tends to go unnoticed in the axially symmetric context is that the action
involves not only first derivatives (velocities) but also second derivatives (accelerations), a
feature that is somewhat challenging from a Newtonian point of view. With axial symmetry,
the problem is simply sidestepped by introducing the turning angle along the contour (a
velocity) as an intermediate variable; with respect to this variable, the action involves no
derivative higher than first. What amounts to the same thing, only without the sleight of hand,
is to introduce the natural phase space that is appropriate for the Hamiltonian formulation of
a theory based on an action involving accelerations: introduce momenta not only canonically
conjugate to the particle position, but also to its velocity.

Even if axial symmetry were to be our final goal, there are benefits to this apparently
unnecessarily complicated formalism: both the momenta and the constraints possess physical
meaning and Hamilton’s equations will evolve physical initial data in a remarkably
straightforward way. As we will show, once the Hamiltonian formulation of the shape
equation has been set up, modulo the tuning of suitable initial conditions that will produce a
geometry that closes smoothly, its implementation is straightforward.

We model a lipid vesicle as a two-dimensional surface �. The surface is described
locally by the embedding x = X(ua), where x are local coordinates in space, ua = (u1, u2)

local coordinates on the surface, and the position functions X(ua) are three functions of two
variables. We denote by ea = ∂aX = ∂X/∂ua the two tangent vectors to the surface. The
metric induced on � is given by their inner product, gab = ea · eb. The unit normal n to � is
defined implicitly by ea · n = 0, n2 = 1. The extrinsic curvature tensor is Kab = −n · ∂a∂bX
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and the mean curvature is K = gabKab, where gab is the inverse of the induced metric gab.
In terms of the principal curvatures, {c1, c2}, we have K = c1 + c2. The intrinsic scalar
curvature can be given in terms of the extrinsic curvature via the Gauss–Codazzi equation as
R = K2 − KabKab; it is twice the Gaussian curvature G, i.e., R = 2G = 2c1c2.

We consider the Helfrich–Canham geometric model, or bilayer coupling model, for a
fluid lipid vesicle, with energy

F [X] = κ

2

∫
dAK2 + β

∫
dAK + σA − PV, (1)

where the constant κ is the bending rigidity, dA = √
g d2u denotes the infinitesimal area

element on the surface and g is the determinant of the induced metric gab. The constants β,
σ , P are Lagrange multipliers enforcing the constraints of constant total mean curvature (or
constant area difference between the layers), constant area and constant enclosed volume V ,
respectively [18]. A refinement, known as the ADE model, imposes a non-local constraint
involving the square of the area difference [19–21]. Our considerations can be extended to
this and other geometrical models for membranes. Note that the volume can be written as a
surface integral:

V = 1

3

∫
dA n · X. (2)

We have not included a term corresponding to the Gaussian bending, FG[X] = κG

∫
dA R,

since it is a topological invariant by the Gauss–Bonnet theorem, and, as such, it does not
contribute to the determination of equilibrium configurations. The energy (1) is invariant
under rigid motions, translations and rotations, of the surface in the ambient space. It also
possesses a local symmetry: invariance under reparametrizations.

The vanishing of the first variation of the energy (1), with respect to variations of the
position functions X(ua) → X(ua) + δX(ua), gives the shape equation [6, 7, 9, 22]

κ

[
−∇2K − K

2
(K2 − 2R)

]
+ βR + σK − P = 0, (3)

where ∇2 denotes the surface Laplacian. This fourth-order nonlinear PDE determines the
equilibrium configurations of lipid vesicles. There is only one equilibrium condition, whereas
naively one would have expected three. Reparametrization invariance informs us that two
linear combinations of these three equations, corresponding to tangential deformations, must
vanish identically [23]. The only physical deformations are those normal to the surface.

Let us now specialize to axially symmetric configurations. The embedding of an axially
symmetric configuration can be written as

x = X(ua) = X(t, φ) =

R(t) cos φ,

R(t) sin φ,

Z(t)


 , (4)

where t is an arbitrary parameter along the contour of the surface at fixed φ. Any space vector
V can be written in adapted components as

V(t, φ) =

VR(t) cos φ,

VR(t) sin φ,

VZ(t)


 , (5)
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so that on the plane φ = 0 it reduces to a two-dimensional t-dependent vector with
components {VR(t), VZ(t)}. The basis adapted to the surface is given by the two tangent
vectors et = ∂X/∂t = Ẋ and eφ = ∂X/∂φ, together with the unit normal vector

n(t, φ) = 1

N


Ż(t) cos φ,

Ż(t) sin φ,

−Ṙ(t)


 , (6)

where we introduce the function

N =
√

Ṙ2 + Ż2. (7)

Note that arclength l along the contour is defined infinitesimally by dl = Ndt . The induced
metric and the extrinsic curvature tensor assume the form

gab =
(

N2 0
0 R2

)
, Kab = 1

N

(
ṘZ̈ − ŻR̈ 0

0 RŻ

)
. (8)

For the mean curvature and the scalar curvature it follows that

K = gabKab = R(ṘZ̈ − ŻR̈) + N2Ż

RN3
, R = 2Ż(ṘZ̈ − ŻR̈)

RN4
. (9)

The Helfrich–Canham energy (1) specialized to axially symmetric configurations, in terms
of an arbitrary parameter t , is

F [X] = 2π

∫
dtL(R,Z, Ṙ, Ż, R̈, Z̈), (10)

where the Lagrangian function is

L(R,Z, Ṙ, Ż, R̈, Z̈) = κ

2

[R(ṘZ̈ − ŻR̈) + ŻN2]2

RN5

+ β
R

N2
(ṘZ̈ − ŻR̈) + βŻ + σRN − P

3
R(RŻ − ZṘ). (11)

We now treat this energy as an action determining the motion of a fictitious particle in the
two-dimensional configuration space {R,Z}. The arbitrary parameter t will play the role of
time. The Lagrangian function involves the squared acceleration of this fictitious particle; it
enters quadratically due to bending, and linearly due to the constraint of constant total mean
curvature. The only serious nonlinearity is the dependence of the Lagrangian on the velocity
{Ṙ, Ż}. The factors of R,N ensure that the action is invariant under reparametrizations of t ,
all that remains of the reparametrization invariance of the energy (1) once we specialize to
axially symmetry. The only dependence on Z is through the volume, if P �= 0.

The axially symmetric version of the shape equation can be obtained either by direct
specialization of the general shape equation (3) or as the vanishing of the Euler–Lagrange
derivative of the energy (10) (see the appendix)

Ei = d2

dt2

(
∂L

∂Q̈i

)
− d

dt

(
∂L

∂Q̇i

)
+

∂L

∂Qi
, (12)

where Qi = {R,Z}. Each gives a copy of the shape equation. As noted below, there is only a
single shape equation.

Two features of the dynamical system defined by the action (10) complicate its
Hamiltonian formulation: the energy depends on second derivatives of the configuration
variables, the position functions; and because we have chosen to work in an arbitrary
parametrization, there is a local symmetry—reparametrization invariance. The implications
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of the latter will become apparent only after we have obtained the canonical Hamiltonian.
First, we must construct the phase space.

The most direct approach to handling the presence of the second derivatives {R̈, Z̈} is to
extend the phase space: we treat not only the position variables {R,Z} but also their velocities
{Ṙ, Ż} as configuration variables and introduce conjugate momenta for both sets of variables.
(A brief summary of the Hamiltonian formulation of higher derivative systems is provided in
the appendix.) The momenta {PR, PZ} conjugate to the velocities {Ṙ, Ż} are, respectively,

PR = ∂L

∂R̈
= −κ

Ż

N5
[R(ṘZ̈ − ŻR̈) + ŻN2] − β

RŻ

N2
, (13)

PZ = ∂L

∂Z̈
= κ

Ṙ

N5
[R(ṘZ̈ − ŻR̈) + ŻN2] + β

RṘ

N2
. (14)

We note that the vector {PR, PZ} is directed along the normal to the contour, and that its
bending part is proportional to the mean curvature [17]. Note also that the vector {PR, PZ}
depends at most on second derivatives of {R,Z}.

The momenta {pR, pZ} conjugate to {R,Z} are, respectively,

pR = ∂L

∂Ṙ
− d

dt

(
∂L

∂R̈

)

= −5κṘ[R(ṘZ̈ − ŻR̈) + ŻN2]2

2RN7
+

κ(RZ̈ + 2ṘŻ)[R(ṘZ̈ − ŻR̈) + ŻN2]

RN5

− 2βRṘ(ṘZ̈ − ŻR̈)

N4
+

βRZ̈

N2
+

σRṘ

N
+

P

3
RZ − Ṗ R, (15)

pZ = ∂L

∂Ż
− d

dt

(
∂L

∂Z̈

)

= −5κŻ[R(ṘZ̈ − ŻR̈) + ŻN2]2

2RN7
+

κ(−RR̈ + Ṙ2 + 3Ż2)[R(ṘZ̈ − ŻR̈) + ŻN2]

RN5

− 2βRŻ(ṘZ̈ − ŻR̈)

N4
− βRR̈

N2
+

σRŻ

N
+ β − P

3
R2 − Ṗ Z. (16)

Despite the unpromising appearance of these expressions, in [17] we will see that the vector
{pR, pZ} is the projection of the stress tensor associated with the membrane along the unit
tangent to the contour. There is a direct physical significance attached. Note that this vector
has a dependence, through the derivatives of {PR, PZ}, on the third derivatives of {R,Z}.

We have now identified the appropriate phase space for the system defined by the energy
(10): the position of a particle in two dimensions {R,Z}, and its conjugate momenta {pR, pZ},
given by (15), (16), together with the velocity {Ṙ, Ż} and its conjugate momenta {PR, PZ},
given by (13), (14). Intuitively, the position is conjugate to its third derivative; the velocity is
conjugate to the second derivative of the position. As we will see below, however, not all of
this phase space is accessible: reparametrization invariance will imply constraints.

Our next step is to construct the Hamiltonian on the phase space. Because the Lagrangian
depends on second derivatives of {R,Z}, the definition of the canonical Hamiltonian H0

involves the Legendre transformation with respect to the accelerations {R̈, Z̈} as well as the
velocities, {Ṙ, Ż} (see the appendix), as

H0(PR, pR, Ṙ, R;PZ, pZ, Ż, Z) = PRR̈ + PZZ̈ + pRṘ + pZŻ − L(R,Z, Ṙ, Ż, R̈, Z̈).

(17)
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The definition of the momenta {PR, PZ} is used to express the higher derivatives configuration
variables {R̈, Z̈} in terms of the phase space variables PR, PZ, Ṙ, Ż, Z,R. Unlike a lower
order Hamiltonian system, the terms pRṘ, pZŻ are left alone; they are already in canonical
form.

To facilitate the elimination of {R̈, Z̈} in (17), we square (13) and (14), defining the
momenta {PR, PZ}, and add to give

R2(ṘZ̈ − ŻR̈)2 = N8

κ2

[(
PR + κ

Ż2

N3
+ β

RŻ

N2

)2

+

(
PZ − κ

ŻṘ

N3
− β

RṘ

N2

)2
]

. (18)

It follows that the canonical Hamiltonian is expressed in terms of the phase space variables as

H0 = pRṘ + pzŻ +
N3

2κR

[(
PR + κ

Ż2

N3
+ β

RŻ

N2

)2

+

(
PZ − κ

ŻṘ

N3
− β

RṘ

N2

)2
]

− κŻ2

2RN
− βŻ − σRN +

P

3
R(RŻ − ZṘ). (19)

This Hamiltonian is quadratic in {PR, PZ} and linear in {pR, pZ}.
We have dealt with the first difficulty, the higher order nature of the system defined

by (10); now we face the second one, the presence of a local symmetry. In this higher
derivative model, the presence of reparametrization invariance implies that the Hessian of the
Lagrangian with respect to the second derivatives is degenerate; and it is impossible to invert
for the accelerations in terms of their conjugate momenta. The Hessian is

Hij = ∂2L

∂Q̈i∂Q̈j
= κR

N5

(
Ż2 −ṘŻ

−ṘŻ Ṙ2

)
, (20)

with Qi = {R,Z}, and we see that its determinant vanishes. This means that at any value
of the parameter t the phase space variables are not all independent, they are connected by
constraints. The first (or primary) constraint is easily identified from the definition of the
higher momenta (13), (14) as

C = PRṘ + PZŻ = 0. (21)

This is simply the statement that the vector {PR, PZ} is directed along the normal to the
contour. As we will see, this is equivalent to the fact that the tangential component of the
acceleration is gauge: the parametrization we choose will fix this component.

The Hamiltonian that generates the motion is given by adding this constraint to the
canonical Hamiltonian,

H = H0 + λC; (22)

the Lagrange multiplier λ is an arbitrary function of t that enforces the constraint (21).
The Poisson bracket appropriate for this higher derivative model is, for any two phase

space functions f, g (see the appendix),

{f, g} = ∂f

∂Ṙ

∂g

∂PR

+
∂f

∂R

∂g

∂pR

+
∂f

∂Ż

∂g

∂PZ

+
∂f

∂Z

∂g

∂pZ

− (f ↔ g); (23)

the time derivative of a phase space function f is given by the Poisson bracket with the
Hamiltonian (22)

ḟ = {f,H } = {f,H0} + λ{f,C}. (24)

We have identified a constraint C on the phase space variables. This is not the whole story,
however. Even if C = 0 initially, we are not guaranteed that it continues to hold. Consistency
requires that C = 0 be preserved by the evolution: a short calculation gives

Ċ = {C,H0} = −H0. (25)
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Thus, we need to impose the secondary constraint

H0 = 0; (26)

the canonical Hamiltonian itself must vanish, the hallmark of reparametrization invariance.
Here, it shows up as a secondary constraint. Clearly, Ḣ 0 = 0. There are no other (tertiary)
constraints. As a constraint, H0 = 0 specifies the tangential part of the vector {pR, pZ} in
terms of the remaining dynamical variables.

The Hamiltonian function (22) generating the dynamics is a linear combination of two
constraints. Hamilton’s equations will reproduce the equilibrium condition given by the
vanishing of the Euler–Lagrange derivative (12).

The first pair of equations is

dR

dt
= ∂H

∂pR

= Ṙ, (27)

dZ

dt
= ∂H

∂pZ

= Ż, (28)

since {pR, pZ} appear in the Hamiltonian only in the combination pRṘ+pZŻ. These equations
tell us how the vector {R,Z} evolves; in this formalism they are model independent.

The second pair of equations is

dṘ

dt
= R̈ = ∂H

∂PR

= N3

κR

(
PR + κ

Ż2

N3
+ β

RŻ

N2

)
+ λṘ, (29)

dŻ

dt
= Z̈ = ∂H

∂PZ

= N3

κR

(
PZ − κ

ŻṘ

N3
− β

RṘ

N2

)
+ λŻ. (30)

They tell us how {Ṙ, Ż} evolves. They involve the Lagrange multiplier λ explicitly.
Just as (27) and (28), encode the definition of the canonical variables {Ṙ, Ż} as the

time derivatives of {R,Z}, one would expect these equations to encode the definition of the
momenta {PR, PZ} in terms of {R,Z}, {Ṙ, Ż} and {R̈, Z̈}.

Let us first express the Lagrange multiplier λ in terms of the acceleration. We multiply
(29) by Ṙ and (30) by Ż and we add. Using the constraint (21), we identify

λ = ṘR̈ + ŻZ̈

N2
= Ṅ

2N2
. (31)

It vanishes in a parametrization by arclength. Geometrically, it is the affine connection for
the planar curve described by {R(t), Z(t)}; the component of the acceleration tangent to the
contour is pure gauge—it can be chosen arbitrarily. In particular, it can be chosen to vanish. If
the expression (31) for λ is fed back into (29) and (30), we find that they reproduce the forms
(13) and (14) for PR and PZ , respectively. We do, however, have to use the primary constraint.

The third pair of equations is

dPR

dt
= −∂H

∂Ṙ
= −pR − λPR − 3ṘN

2κR

(
P 2

R + P 2
Z

)
+

PZŻ

R
− β2RṘ

2κN

+
β

κN
[PZ(2Ṙ2 + Ż2) − PRṘŻ] + σ

RṘ

N
+

P

3
RZ, (32)

dPZ

dt
= −∂H

∂Ż
= −pZ − λPZ − 3ŻN

2κR

(
P 2

R + P 2
Z

)
+

PZṘ

R
− 2PRŻ

R
− β2RŻ

2κN
,

− β

κN
[PR(Ṙ2 + 2Ż2) − PZṘŻ] + σ

RŻ

N
− P

3
R2. (33)
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They tell us how the vector {PR, PZ} evolves. One would expect these equations to encode
the definition of the momenta pR and pZ given by (15) and (16). To show this is not entirely
straightforward. It is necessary to use the information gathered in the previous Hamilton
equations, namely the form of {PR, PZ} and of λ.

Finally, the fourth pair of equations is

dpR

dt
= −∂H

∂R
= N3

2κR2

(
P 2

R + P 2
Z

)
+

PRŻ2

R2
− PZṘŻ

R2
− β2N

2κ
+ σN − P

3
(2RŻ − ZṘ),

(34)
dpZ

dt
= −∂H

∂Z
= P

3
RṘ. (35)

They tell us how {pR, pZ} evolve. With these equations, we reproduce the vanishing of the
Euler–Lagrange derivative (12). One sees that the latter of the two equations has the obvious
first integral

J = pZ − P

6
R2 = const. (36)

The first integral of the axially symmetric shape equation [8, 9] emerges naturally within this
framework.

The recipe to construct an axially symmetric equilibrium configuration is as follows.
Choose initial data: at t = 0, take a point on the plane, specified by its position vector {R,Z},
choose a velocity vector {Ṙ, Ż} (this encodes the initial direction of the contour); next choose a
vector {PR, PZ}, orthogonal to the velocity (so as to satisfy the primary constraint (21)); finally
choose the momentum {pR, pZ} with a tangential component consistent with the secondary
constraint H0 = 0 where H0 is given by equation (19). These are our physical degrees of
freedom.

This initial data set is evolved using Hamilton’s equations. An equilibrium surface
contour {R(t), Z(t)} will be generated. The contour itself will not depend on the choice of
the Lagrange multiplier λ (or equivalently the choice of the parameter t).

Our discussion has only mentioned briefly one major point: tuning. One will need to get
the initial conditions right to produce a surface that closes smoothly. The difficulty is that
generating the appropriate geometry will require solving a two-point boundary value problem
with specific conditions on the canonical variables at the endpoints to ensure closure, and, as
previous work on the subject shows [24–27], this involves fine-tuning the initial conditions
on these variables—it can be extremely delicate. Tuning difficulties will, of course, reappear
with a vengeance when axial symmetry is relaxed. All the more reason to possess a robust
formalism to hand.

In this paper, we have examined the construction of axially symmetric equilibrium
configurations of a fluid membrane described by the Helfrich–Canham energy from a
Hamiltonian point of view. If axial symmetry were our final aim this would be a heavy-handed
approach to the problem. The value of all of this formalism will become apparent when we
consider the generalization to non-axially symmetric configurations [17]. This will involve
stepping up from the Hamiltonian dynamics of a particle to the corresponding dynamics of
a field describing a closed curve in space. The membrane surface will be generated by the
evolution of this curve. The details will be provided in [17].
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Appendix

For the benefit of the reader unfamiliar with the Hamiltonian formulation of higher derivative
systems, we consider in this appendix the Hamiltonian description of a toy model: a particle
moving in one dimension described by a Lagrangian of the form L = L(q, q̇, q̈). The
Euler–Lagrange derivative for this Lagrangian is

E = d2

dt2

(
∂L

∂q̈

)
− d

dt

(
∂L

∂q̇

)
+

∂L

∂q
. (A.1)

The phase space is given by the two conjugate pairs {q̇, P } and {q, p}. The momenta conjugate
to q̇ and q are, respectively,

P = ∂L

∂q̈
, (A.2)

p = ∂L

∂q̇
− d

dt

(
∂L

∂q̈

)
. (A.3)

The canonical Hamiltonian is constructed as the Legendre transformation with respect to both
the acceleration q̈ and the velocity q̇ as

H(q̇, P ; q, p) = P q̈ + pq̇ − L, (A.4)

where one uses the definition of the higher momentum P to express the highest derivative q̈

in terms of the phase space variables P, q̇ and q. The term pq̇ in the canonical Hamiltonian
is left alone, since it is already in canonical form.

The Poisson bracket appropriate for this higher derivative model, for two arbitrary phase
space functions f, g, is

{f, g} = ∂f

∂q̇

∂g

∂P
+

∂f

∂q

∂g

∂p
− (f ↔ g), (A.5)

and the time derivative of a phase space function is given by this Poisson bracket with the
Hamiltonian

df

dt
= {f,H }. (A.6)

In particular, it follows that the Hamilton equations are

dq

dt
= ∂H

∂p
= q̇, (A.7)

dq̇

dt
= ∂H

∂P
, (A.8)

dP

dt
= −∂H

∂q̇
, (A.9)

dp

dt
= −∂H

∂q
. (A.10)
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The first equation identifies the time derivative of q with the canonical variable q̇; the second
equation identifies the form of the momenta P conjugate to q̇ and the third equation identifies
the momenta p conjugate to q modulo the definition of P . Using the first three equations, the
fourth equation then reproduces the vanishing of the Euler–Lagrange derivative (A.1).

One important special case is given by a Lagrangian linear in the acceleration,
L = g(q, q̇)q̈. In this case, the higher momentum P = g(q, q̇) is independent of q̈ so
that the acceleration cannot be expressed in terms of the canonical variables. However, it
is always possible to add a total derivative to the Lagrangian and obtain a Lagrangian that
depends at most on q̇ (see, e.g., [28]).

References

[1] Lipowsky R and Sackmann E 1995 (ed) Handbook in Biological Physics vols 1 and 2 (Amsterdam: Elsevier)
[2] Boal D 2002 Mechanics of the Cell (Cambridge: Cambridge University Press)
[3] Canham P 1970 J. Theor. Biol. 26 61
[4] Helfrich W 1973 Z. Naturforsch. C 28 693
[5] Evans E 1974 Biophys. J. 14 923
[6] Ou-Yang Z C and Helfrich W 1987 Phys. Rev. Lett. 59 2486
[7] Ou-Yang Z C and Helfrich W 1989 Phys. Rev. A 39 5280
[8] Zheng W and Liu J 1993 Phys. Rev. E 48 2856
[9] Capovilla R and Guven J 2002 J. Phys. A: Math. Gen. 35 6233

[10] Deuling H J and Helfrich W 1976 J. Phys. (France) 37 1335
[11] Svetina S and Z̆eks̆ B 1996 Nonmedical Applications of Liposomes ed D D Lasic and Y Barenholz (Boca Raton,

FL: CRC Press)
[12] Seifert U 1997 Adv. Phys. 46 13
[13] Lipowsky R 1998 Encyclopedia of Applied Physics vol 23 (Weinheim: VCH) p 199
[14] Gompper G and Kroll D M 1997 J. Phys.: Condens. Matter 42 8795
[15] Bowick M and Trassevet A 2001 Phys. Rep. 344 255
[16] Brakke K A 1992 Exp. Math. 2 141
[17] Capovilla R, Guven J and Rojas E 2005 Preprint cond-mat/0505631
[18] Svetina S and Z̆eks̆ B 1989 Eur. Biophys. J. 17 101
[19] Bozic̆ B, Svetina S, Z̆eks̆ B and Waugh R 1992 Biophys. J. 61 963
[20] Wiese W, Harbich W and Helfrich W 1992 J. Phys.: Condens. Matter 4 1647
[21] Miao L, Seifert U, Wortis M and Döbereiner H G 1994 Phys. Rev. E 43 5389
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